svstep
SVL-Form
- svstep RT,RA,SVi,vf (Rc=0)
- svstep. RT,RA,SVi,vf (Rc=1)
Pseudo-code:
if SVi[3:4] = 0b11 then
# store pack and unpack in SVSTATE
SVSTATE[53] <- SVi[5]
SVSTATE[54] <- SVi[6]
RT <- [0]*62 || SVSTATE[53:54]
else
step <- SVSTATE_NEXT(SVi, vf)
RT <- [0]*57 || step
Special Registers Altered:
CR0 (if Rc=1)
setvl
SVL-Form
- setvl RT,RA,SVi,vf,vs,ms (Rc=0)
- setvl. RT,RA,SVi,vf,vs,ms (Rc=1)
Pseudo-code:
overflow <- 0b0
VLimm <- SVi + 1
# set or get MVL
if ms = 1 then MVL <- VLimm[0:6]
else MVL <- SVSTATE[0:6]
# set or get VL
if vs = 0 then VL <- SVSTATE[7:13]
else if _RA != 0 then
if (RA) >u 0b1111111 then
VL <- 0b1111111
overflow <- 0b1
else VL <- (RA)[57:63]
else if _RT = 0 then VL <- VLimm[0:6]
else if CTR >u 0b1111111 then
VL <- 0b1111111
overflow <- 0b1
else VL <- CTR[57:63]
# limit VL to within MVL
if VL >u MVL then
overflow <- 0b1
VL <- MVL
SVSTATE[0:6] <- MVL
SVSTATE[7:13] <- VL
if _RT != 0 then
GPR(_RT) <- [0]*57 || VL
# MAXVL is a static "state-reset".
if ms = 1 then
SVSTATE[63] <- vf # set Vertical-First mode
SVSTATE[62] <- 0b0 # clear persist bit
Special Registers Altered:
CR0 (if Rc=1)
svremap
SVRM-Form
- svremap SVme,mi0,mi1,mi2,mo0,mo1,pst
Pseudo-code:
# registers RA RB RC RT EA/FRS SVSHAPE0-3 indices
SVSTATE[32:33] <- mi0
SVSTATE[34:35] <- mi1
SVSTATE[36:37] <- mi2
SVSTATE[38:39] <- mo0
SVSTATE[40:41] <- mo1
# enable bit for RA RB RC RT EA/FRS
SVSTATE[42:46] <- SVme
# persistence bit (applies to more than one instruction)
SVSTATE[62] <- pst
Special Registers Altered:
None
svshape
SVM-Form
- svshape SVxd,SVyd,SVzd,SVrm,vf
Pseudo-code:
# for convenience, VL to be calculated and stored in SVSTATE
vlen <- [0] * 7
mscale[0:5] <- 0b000001 # for scaling MAXVL
itercount[0:6] <- [0] * 7
SVSTATE[0:31] <- [0] * 32
# only overwrite REMAP if "persistence" is zero
if (SVSTATE[62] = 0b0) then
SVSTATE[32:33] <- 0b00
SVSTATE[34:35] <- 0b00
SVSTATE[36:37] <- 0b00
SVSTATE[38:39] <- 0b00
SVSTATE[40:41] <- 0b00
SVSTATE[42:46] <- 0b00000
SVSTATE[62] <- 0b0
SVSTATE[63] <- 0b0
# clear out all SVSHAPEs
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
# set schedule up for multiply
if (SVrm = 0b0000) then
# VL in Matrix Multiply is xd*yd*zd
xd <- (0b00 || SVxd) + 1
yd <- (0b00 || SVyd) + 1
zd <- (0b00 || SVzd) + 1
n <- xd * yd * zd
vlen[0:6] <- n[14:20]
# set up template in SVSHAPE0, then copy to 1-3
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[6:11] <- (0b0 || SVyd) # ydim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim
SVSHAPE0[28:29] <- 0b11 # skip z
# copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
SVSHAPE3[0:31] <- SVSHAPE0[0:31]
# set up FRA
SVSHAPE1[18:20] <- 0b001 # permute x,z,y
SVSHAPE1[28:29] <- 0b01 # skip z
# FRC
SVSHAPE2[18:20] <- 0b001 # permute x,z,y
SVSHAPE2[28:29] <- 0b11 # skip y
# set schedule up for FFT butterfly
if (SVrm = 0b0001) then
# calculate O(N log2 N)
n <- [0] * 3
do while n < 5
if SVxd[4-n] = 0 then
leave
n <- n + 1
n <- ((0b0 || SVxd) + 1) * n
vlen[0:6] <- n[1:7]
# set up template in SVSHAPE0, then copy to 1-3
# for FRA and FRT
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D FFT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b01 # Butterfly mode
# copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
# set up FRB and FRS
SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule
# FRC (coefficients)
SVSHAPE2[28:29] <- 0b10 # k schedule
# set schedule up for (i)DCT Inner butterfly
# SVrm Mode 4 (Mode 12 for iDCT) is for on-the-fly (Vertical-First Mode)
if ((SVrm = 0b0100) |
(SVrm = 0b1100)) then
# calculate O(N log2 N)
n <- [0] * 3
do while n < 5
if SVxd[4-n] = 0 then
leave
n <- n + 1
n <- ((0b0 || SVxd) + 1) * n
vlen[0:6] <- n[1:7]
# set up template in SVSHAPE0, then copy to 1-3
# set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1100) then
SVSHAPE0[30:31] <- 0b11 # iDCT mode
SVSHAPE0[18:20] <- 0b011 # iDCT Inner Butterfly sub-mode
else
SVSHAPE0[30:31] <- 0b01 # DCT mode
SVSHAPE0[18:20] <- 0b001 # DCT Inner Butterfly sub-mode
SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop
SVSHAPE0[6:11] <- 0b000011 # (i)DCT Inner Butterfly mode 4
# copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
if (SVrm != 0b0100) & (SVrm != 0b1100) then
SVSHAPE3[0:31] <- SVSHAPE0[0:31]
# for FRA and FRT
SVSHAPE0[28:29] <- 0b01 # j+halfstep schedule
# for cos coefficient
SVSHAPE2[28:29] <- 0b10 # ci (k for mode 4) schedule
SVSHAPE2[12:17] <- 0b000000 # reset costable "striding" to 1
if (SVrm != 0b0100) & (SVrm != 0b1100) then
SVSHAPE3[28:29] <- 0b11 # size schedule
# set schedule up for (i)DCT Outer butterfly
if (SVrm = 0b0011) | (SVrm = 0b1011) then
# calculate O(N log2 N) number of outer butterfly overlapping adds
vlen[0:6] <- [0] * 7
n <- 0b000
size <- 0b0000001
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
itercount[0:6] <- (0b0 || itercount[0:5])
do while n < 5
if SVxd[4-n] = 0 then
leave
n <- n + 1
count <- (itercount - 0b0000001) * size
vlen[0:6] <- vlen + count[7:13]
size[0:6] <- (size[1:6] || 0b0)
itercount[0:6] <- (0b0 || itercount[0:5])
# set up template in SVSHAPE0, then copy to 1-3
# set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1011) then
SVSHAPE0[30:31] <- 0b11 # iDCT mode
SVSHAPE0[18:20] <- 0b011 # iDCT Outer Butterfly sub-mode
SVSHAPE0[21:23] <- 0b101 # "inverse" on outer and inner loop
else
SVSHAPE0[30:31] <- 0b01 # DCT mode
SVSHAPE0[18:20] <- 0b100 # DCT Outer Butterfly sub-mode
SVSHAPE0[6:11] <- 0b000010 # DCT Butterfly mode
# copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31] # j+halfstep schedule
SVSHAPE2[0:31] <- SVSHAPE0[0:31] # costable coefficients
# for FRA and FRT
SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule
# reset costable "striding" to 1
SVSHAPE2[12:17] <- 0b000000
# set schedule up for DCT COS table generation
if (SVrm = 0b0101) | (SVrm = 0b1101) then
# calculate O(N log2 N)
vlen[0:6] <- [0] * 7
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
itercount[0:6] <- (0b0 || itercount[0:5])
n <- [0] * 3
do while n < 5
if SVxd[4-n] = 0 then
leave
n <- n + 1
vlen[0:6] <- vlen + itercount
itercount[0:6] <- (0b0 || itercount[0:5])
# set up template in SVSHAPE0, then copy to 1-3
# set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b01 # DCT/FFT mode
SVSHAPE0[6:11] <- 0b000100 # DCT Inner Butterfly COS-gen mode
if (SVrm = 0b0101) then
SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop for DCT
# copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
# for cos coefficient
SVSHAPE1[28:29] <- 0b10 # ci schedule
SVSHAPE2[28:29] <- 0b11 # size schedule
# set schedule up for iDCT / DCT inverse of half-swapped ordering
if (SVrm = 0b0110) | (SVrm = 0b1110) | (SVrm = 0b1111) then
vlen[0:6] <- (0b00 || SVxd) + 0b0000001
# set up template in SVSHAPE0
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1110) then
SVSHAPE0[18:20] <- 0b001 # DCT opposite half-swap
if (SVrm = 0b1111) then
SVSHAPE0[30:31] <- 0b01 # FFT mode
else
SVSHAPE0[30:31] <- 0b11 # DCT mode
SVSHAPE0[6:11] <- 0b000101 # DCT "half-swap" mode
# set schedule up for parallel reduction or prefix-sum
if (SVrm = 0b0111) then
# is scan/prefix-sum
is_scan <- SVyd = 2
# calculate the total number of operations (brute-force)
vlen[0:6] <- [0] * 7
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
if is_scan then
# prefix sum algorithm with operations replaced with
# incrementing vlen
dist <- 1
vlen[0:6] <- 0
do while dist <u itercount
start <- dist * 2 - 1
step <- dist * 2
i <- start
do while i <u itercount
vlen[0:6] <- vlen[0:6] + 1
i <- i + step
dist <- dist * 2
dist <- dist / 2
do while dist != 0
i <- dist * 3 - 1
do while i <u itercount
vlen[0:6] <- vlen[0:6] + 1
i <- i + dist * 2
dist <- dist / 2
else
step <- 0b0000001
i <- 0b0000000
do while step <u itercount
newstep <- step[1:6] || 0b0
j[0:6] <- 0b0000000
do while (j+step <u itercount)
j <- j + newstep
i <- i + 1
step <- newstep
# VL in Parallel-Reduce is the number of operations
vlen[0:6] <- i
# set up template in SVSHAPE0, then copy to 1. only 2 needed
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b10 # parallel reduce/prefix submode
# copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
# set up submodes: parallel or prefix
SVSHAPE0[28:29] <- 0b00 # left operand
SVSHAPE1[28:29] <- 0b01 # right operand
if is_scan then
SVSHAPE0[28:29] <- 0b10 # left operand
SVSHAPE1[28:29] <- 0b11 # right operand
# set VL, MVL and Vertical-First
m[0:12] <- vlen * mscale
maxvl[0:6] <- m[6:12]
SVSTATE[0:6] <- maxvl # MAVXL
SVSTATE[7:13] <- vlen # VL
SVSTATE[63] <- vf
Special Registers Altered:
None
svindex
SVI-Form
- svindex SVG,rmm,SVd,ew,SVyx,mm,sk
Pseudo-code:
# based on nearest MAXVL compute other dimension
MVL <- SVSTATE[0:6]
d <- [0] * 6
dim <- SVd+1
do while d*dim <u ([0]*4 || MVL)
d <- d + 1
# set up template, then copy once location identified
shape <- [0]*32
shape[30:31] <- 0b00 # mode
if SVyx = 0 then
shape[18:20] <- 0b110 # indexed xd/yd
shape[0:5] <- (0b0 || SVd) # xdim
if sk = 0 then shape[6:11] <- 0 # ydim
else shape[6:11] <- 0b111111 # ydim max
else
shape[18:20] <- 0b111 # indexed yd/xd
if sk = 1 then shape[6:11] <- 0 # ydim
else shape[6:11] <- d-1 # ydim max
shape[0:5] <- (0b0 || SVd) # ydim
shape[12:17] <- (0b0 || SVG) # SVGPR
shape[28:29] <- ew # element-width override
shape[21] <- sk # skip 1st dimension
# select the mode for updating SVSHAPEs
SVSTATE[62] <- mm # set or clear persistence
if mm = 0 then
# clear out all SVSHAPEs first
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
idx <- 0
for bit = 0 to 4
if rmm[4-bit] then
# activate requested shape
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
# increment shape index, modulo 4
if idx = 3 then idx <- 0
else idx <- idx + 1
else
# refined SVSHAPE/REMAP update mode
bit <- rmm[0:2]
idx <- rmm[3:4]
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
SVSTATE[46-bit] <- 1
Special Registers Altered:
None
svshape2
SVM2-Form
- svshape2 SVo,SVyx,rmm,SVd,sk,mm
Pseudo-code:
# based on nearest MAXVL compute other dimension
MVL <- SVSTATE[0:6]
d <- [0] * 6
dim <- SVd+1
do while d*dim <u ([0]*4 || MVL)
d <- d + 1
# set up template, then copy once location identified
shape <- [0]*32
shape[30:31] <- 0b00 # mode
shape[0:5] <- (0b0 || SVd) # x/ydim
if SVyx = 0 then
shape[18:20] <- 0b000 # ordering xd/yd(/zd)
if sk = 0 then shape[6:11] <- 0 # ydim
else shape[6:11] <- 0b111111 # ydim max
else
shape[18:20] <- 0b010 # ordering yd/xd(/zd)
if sk = 1 then shape[6:11] <- 0 # ydim
else shape[6:11] <- d-1 # ydim max
# offset (the prime purpose of this instruction)
shape[24:27] <- SVo # offset
if sk = 1 then shape[28:29] <- 0b01 # skip 1st dimension
else shape[28:29] <- 0b00 # no skipping
# select the mode for updating SVSHAPEs
SVSTATE[62] <- mm # set or clear persistence
if mm = 0 then
# clear out all SVSHAPEs first
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
idx <- 0
for bit = 0 to 4
if rmm[4-bit] then
# activate requested shape
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
# increment shape index, modulo 4
if idx = 3 then idx <- 0
else idx <- idx + 1
else
# refined SVSHAPE/REMAP update mode
bit <- rmm[0:2]
idx <- rmm[3:4]
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
SVSTATE[46-bit] <- 1
Special Registers Altered:
None